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Classic genome-wide association studies (GWAS) look for 
associations between individual single-nucleotide polymor-
phisms (SNPs) and phenotypes of interest. With the rapid 
progress of high-throughput genotyping and phenotyping 
technologies, GWAS have become increasingly powerful for 
detecting genetic determinants and their molecular mech-
anisms underpinning natural phenotypic variation. How-
ever, GWAS frequently yield results with neither expected 
nor promising loci, nor any significant associations. This is 
often because associations between SNPs and a single phe-
notype are confounded, for example with the environment, 
other traits or complex genetic structures. Such confounding 
can mask true genotype–phenotype associations, or inflate 
spurious associations. To address these problems, numer-
ous methods have been developed that go beyond the stan-
dard model. Such advanced GWAS models are flexible and 
can offer improved statistical power for understanding the 
genetics underlying complex traits. Despite this advantage, 
these models have not been widely adopted and imple-
mented compared to the standard GWAS approach, partly 
because this literature is diverse and often technical. In 
this review, our aim is to provide an overview of the appli-
cation and the benefits of various advanced GWAS mod-
els for handling complex traits and genetic structures, tar-
geting plant biologists who wish to carry out GWAS more
effectively.

Keywords: Advanced GWAS • Complex traits • Genetic 
architecture • Multiple traits

© The Author(s) 2024. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 
re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via 
the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

Introduction

Understanding the genetic basis of phenotypic diversity is a 
central question in biology. Genome-wide association stud-
ies (GWAS) use samples from natural populations and cul-
tivars to identify associations between genetic variants and 
traits, and have become increasingly powerful with advances 

in high-throughput genotyping and phenotyping technologies 
(Dhondt et al. 2013, Ellegren 2014, Gill et al. 2022). GWAS 
of morphological and physiological traits have helped eluci-
date the genetic variants underlying biological pathways (Atwell 
et al. 2010), identifying variants associated with susceptibil-
ity and response to disease (Todesco et al. 2010, Demirjian 
et al. 2023), pinpoint targets for selective breeding (El-Soda 
et al. 2015, Albert et al. 2016, Yano et al. 2016), and illumi-
nate the forces of selection in natural populations (Li et al. 
2010, Fournier-Level et al. 2011, Josephs et al. 2017, Rees et al. 
2020). GWAS have great potential for revealing the genetic basis 
of traits and understanding the interaction between genetic 
variation and environments.

The vast majority of GWAS have used a simple but powerful 
statistical model to relate genotypes to phenotypes. Under this 
‘standard GWAS’ model (Supplementary note box 1), an associ-
ation is calculated between a single-nucleotide polymorphism 
(SNP) and a single phenotype for each SNP in turn. This stan-
dard GWAS is widely applied and has been the subject of several 
comprehensive reviews (e.g. Korte and Farlow 2013, Sul et al. 
2018, Uffelmann et al. 2021). However, GWAS often yield results 
that are challenging to interpret, such as an absence of genetic 
associations at all, associations in regions with no clear link to 
the trait, or associations that cannot be validated. This is often 
because this simple model is insufficient to address the bio-
logical question at hand. In particular, GWAS relies on natural 
variation, which is often more genetically complex than that the 
standard model assumes (Fig. 1). First, there are often complex 
patterns of correlation between multiple traits and between 
traits and the environment (Devlin and Roeder 1999, Dickson 
et al. 2010, Platt et al. 2010). Second, there may be multiple 
segregating haplotypes that can obscure true patterns of associ-
ations at individual SNPs. Third, phenotypes are often measured 
with substantial noise, while the real effect sizes at individual 
SNPs are often small. These factors can cause true associations 
to be missed. They may lead to spurious associations, result-
ing in considerable wasted time and effort validating them
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Fig. 1 The concept of multiple traits. (A) Examples of multiple traits: pleiotropic effects and genetic and environmental interactions (G x E) to be applied 
in multiple-trait analyses. (B) Four scenarios of association between a trait and a given SNP. Each point represents an individual with a shape (circle and triangle) 
corresponding to the genotype at a causal SNP. (i) Traits A and B are not correlated, and the SNP only affects trait A. Separate univariate tests detect SNPs underlying 
variation for each trait. (ii) Traits A and B are correlated when measured in the same environment, and the same SNP affects both traits (pleiotropic effect). A 
multivariate test of traits A and B can detect SNPs underlying both traits. (iii) Trait A varies between environments because the SNP genotypes respond differently 
in the two environments (GxE), leading to a correlation between environments. A multivariate test of a candidate SNP on trait A measured in different environments 
can distinguish the common effect in both environments as well as the effect in each environment separately (GxE). (iv) Trait A is regulated by both a causal SNP 
and an additional trait B. Individuals with genotype 0 at the SNP (triangle) have higher values for trait A than individuals with genotype 1 in a way that would be 
masked if the correlation between traits A and B were ignored. In this case, a univariate test conditioning on trait B can detect the SNP showing a trait-specific effect 
on trait A.

(Beavis 1994, Xu 2003, Platt et al. 2010). In these cases, the sim-
ple association between one SNP and one trait assumed by the 
standard GWAS is not a good model to understand the true 
genetic basis of the trait.

Fortunately, numerous methods have been developed that 
go beyond the standard model to address some of these prob-
lems (Tibbs Cortes et al. 2021). By accounting for the struc-
ture of the data more realistically, these methods have great 

2

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/advance-article/doi/10.1093/pcp/pcae079/7710836 by M

ax Perutz Library user on 05 Septem
ber 2024



Plant Cell Physiol. 00(00): 1–13 (2024) doi:https://doi.org/10.1093/pcp/pcae079

potential to identify genetic associations more accurately and 
efficiently. However, since the literature is diverse and often 
technical, these methods remain underutilized. In this review, 
we aim to highlight three broad groups of approaches that go 
beyond the standard GWAS (Supplementary note box 1), which 
we believe are particularly relevant to questions in plant biology. 
This review is aimed at researchers without a strong statistics 
background but are nevertheless familiar with the standard 
GWAS and wish to go further. First, we highlight how modeling 
multiple traits in a single analysis can increase statistical power 
and interpretability. Second, we discuss what can be done to 
investigate an apparent association once one has been iden-
tified. Finally, we discuss what interesting conclusions may be 
drawn even if a study has found no peaks of association. Our 
goal is to build an intuition into why these methods are useful 
rather than go into statistical details.

Combining Multiple Traits in a Single Analysis

It is common for biological phenotypes to be correlated. When 
those traits share a genetic basis, the loci involved are said to be 
pleiotropic (Fig. 1A; Stearns 2010). Pleiotropy is usually thought 
of as reflecting correlations between traits in the same organism, 
such as vegetative size and reproductive output. Nevertheless, 
the idea is equally applicable to a single phenotype measured 
in multiple environments (Falconer 1952). In these cases, using 
GWAS to directly assess pleiotropic relationships or how pheno-
types depend on the environment can be helpful in addressing 
the underlying biological questions. In this section we illustrate 
some ways to incorporate multiple traits into GWAS, focusing 
on (i) joint analysis of multiple phenotypes, (ii) how phenotypes 
change across environments and (iii) accounting for correlated 
traits not directly of interest.

Joint analysis of multiple traits
When we analyze the association between loci and multi-
ple phenotypes in a single model, statistical power usually 
increases compared to multiple analyses of individual pheno-
types (Stephens 2013). This gain in power in such ‘multitrait’ 
analyses comes from directly modeling the correlation in resid-
ual errors between traits (Fig. 1). Here we highlight several of 
the most popular multitrait models that are suitable as the 
number of traits increases from two to thousands. We focus on 
methods that estimate associations with multiple traits that are 
also able to account for genome-wide relatedness (Supplemen-
tary note box 1). A detailed review and comparison of 10 related 
methods are given by Porter and O’Reilly (2017).

Building on methods for handling many traits in quanti-
tative genetics, Korte et al. (2012) described a multiple-trait 
mixed model (MTMM) that linked multivariate regression with 
the population structure control needed for GWAS. For pairs 
of traits, MTMM estimates two separate effects for each SNP: 
the common genetic effect of the SNP on both traits, and a 
trait-specific effect. MTMM is implemented in LIMIX (Lippert 

et al. 2014). Zhou and Stephens (2014) extended this idea to 
allow for more than two phenotypes in a fully multivariate 
framework in the software package GEMMA. It can often help 
to transform phenotypes so that they are on the same scale 
(Schielzeth 2010). A good example of these approaches is that of 
Thoen et al. (2017), who identified loci associated with 30 stress 
responses and the shared genetic architectures in Arabidopsis 
thaliana. Associations were stronger and effect sizes were larger 
in multitrait compared to single-trait analyses.

It is increasingly feasible to generate datasets with hundreds 
or even thousands of traits, including phenomes from large-
scale phenotyping technologies as well as genome-wide molec-
ular phenotypes, such as the transcriptome, metabolome or 
epigenome. These phenotypes are typically regulated as net-
works, and a major goal is to understand the genetic regulation 
of these networks (Eichten et al. 2013, Fu et al. 2013, Schmitz 
et al. 2013, Dubin et al. 2015, Kawakatsu et al. 2016, Zhu et al. 
2018). The scale of these datasets brings a substantial com-
putational and multiple-testing burden that require different 
assumptions and approaches (Petretto et al. 2010, Ferguson 
et al. 2012, Flutre et al. 2013, Li et al. 2018). For example, the 
Multivariate Adaptive Shrinkage (MASH) approach of Urbut 
et al. (2019) addresses the computational and multiple-testing 
burdens by breaking up the task into two stages. MASH first 
estimates SNP effects on each trait separately. It then updates 
these initial values based on their standard errors and the 
correlation between them in a Bayesian framework to gain a 
more realistic picture of the relationship between SNPs and all 
traits combined. They applied this method to investigate how 
the association between local SNPs and gene expression varies 
across 44 human tissues, and found substantial heterogeneity in 
SNP effects across tissues.

Meta-analysis is an alternative approach for examining 
shared and trait-specific genetic effects as a post hoc analysis 
(Munafò and Flint 2004, Evangelou and Ioannidis 2013). Mul-
tivariate analyses can be effective but they require datasets in 
which all phenotypes have been measured for the same set of 
genotypes in order to fit a single model. Meta-analysis approach 
integrates the evidence for an association at each SNP across 
multiple univariate GWAS. Building on classical meta-analysis, 
the simplest approach is to sum negative log P-values, which is 
tantamount to asking whether the SNP shows associations with 
any of the datasets, making it a candidate for further investi-
gation. Several alternative approaches have been developed to 
test more sophisticated null hypotheses (Evangelou and Ioan-
nidis 2013), and many bioinformatics tools and software are 
available (Purcell et al. 2007, M ̈agi and Morris 2010). Examples 
of this method include summarizing pleiotropic effects of 234 
agronomic traits in Sorghum (Mural et al. 2021), DNA methyla-
tion levels in 308 families of transposons in A. thaliana (Sasaki 
et al. 2019), comprehensive seed phenotypes in cowpea (Lo 
et al. 2019) and growth-related traits for four unrelated pop-
ulations in Eucalyptus (Müller et al. 2019). One issue is that 
meta-GWAS essentially treats component studies as indepen-
dent, and the resulting summary statistics will be biased if this is 
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not true. This is a particular concern for meta-GWAS on molec-
ular phenotypes, which are often strongly correlated. While 
further development is clearly needed, meta-GWAS are still 
useful tools for generating hypotheses about interesting loci 
which can then be validated by further work.

Another approach is to simplify the data to one or a hand-
ful of dimensions prior to performing GWAS. It may be possible 
to synthesize multiple related traits into a single ‘function-value 
trait’ (Gomulkiewicz et al. 2018), which can then be analyzed 
as a single trait. More generally, principal component analysis 
(PCA) summarizes multivariate phenotypic data into a smaller 
set of variables that are orthogonal (i.e. not correlated) with one 
another (Pearson 1901, Ringnér 2008). This has the advantages 
that (i) the multiple testing problem is reduced (Weller et al. 
1996), (ii) results may be more robust since skewed original phe-
notypic variations tend to be synthesized into a normal distribu-
tion (Kumar et al. 2022) and (iii) single-trait standard GWAS can 
be applied to these transformed phenotypes. Single-trait mod-
els for PCA-transformed traits have been widely applied, for 
example for flowering time in rice (Yano et al. 2019), microele-
ment accumulation in maize (Ma et al. 2021), inflorescence and 
leaf architecture in maize (Rice et al. 2020), and root-system 
architecture in A. thaliana (Julkowska et al. 2017). The disadvan-
tage of this approach is that the resulting principal components 
are synthetic traits and it can be difficult to interpret their 
biological meaning.

Interactions between genotype and the 
environment
Quantitative phenotypes typically depend at least to some 
extent on the environment. The environment may affect all phe-
notypes in a similar way (a direct environmental effect) but 
there can also be genotype-specific responses to each environ-
ment (a genotype-by-environment interaction, or GxE; Fig. 1A). 
For example, we would expect that crop yield would be reduced 
across genotypes when plants are exposed to a pathogen, but 
particular genotypes may be susceptible or resistant. An impor-
tant example is when genotypes show increased yield or fitness 
in the region they were bred or evolved than do foreign geno-
types grown at the same location, but reduced yield or fitness 
at other sites. GxE is thus an important concept in agriculture 
and environmental adaptation (Kawecki and Ebert 2004).

These problems lend themselves well to multitrait
approaches such as those described above because they can 
directly estimate genetic, environmental and GxE effects. This 
has been applied, for example, to gene expression in different 
environments (Lippert et al. 2014, Clauw et al. 2016), GxE of 
drought responses in A. thaliana and tomato (El-Soda et al. 
2015, Albert et al. 2016) and temperature-dependent flow-
ering time in A. thaliana (Sasaki et al. 2015). An alternative 
approach is to directly estimate a measure of plasticity (Val-
ladares et al. 2006, Filiault and Maloof 2012), and use this 
directly as a trait in a univariate GWAS. For example, Mor-
rison and Linder (2014) did not find loci showing significant 

GxE interaction germination traits in A. thaliana in a multi-
trait model, but did identify significant genetic associations 
with reaction norms (Fig. 1A; a simple measure of the differ-
ence in phenotype between environments) for the same traits. 
This illustrates that these two approaches may capture different 
aspects of the data.

The inclusion of covariates: a double-edged sword
As previously mentioned, GWAS rely on natural variation, 
which is often confounded by spatial and environmental vari-
ables, which can lead to spurious genetic associations. For 
example, commercially important reproductive phenotypes in 
rice are strongly confounded with local adaptation and flow-
ering time (Crowell et al. 2016). Just as we can adjust for 
confounding due to population structure (Supplementary note 
box 1), GWAS can adjust for other sources of confounding by 
including additional information as covariates (Fig. 1B). Includ-
ing covariates differs from the multiple-trait models described 
above in that the former includes additional explanatory vari-
ables in the model, while the latter includes additional response 
variables (Fig. 1B). In the rice example, including flowering 
time as a covariate in a GWAS of reproductive traits revealed 
additional genetic associations without the need for increased 
sample sizes (Crowell et al. 2016). Likewise, methylation of dif-
ferent sequence motifs in A. thaliana is partially regulated by 
the same pathways, and accounting for this allowed for the 
detection of quantitative trait locus (QTL) where none were 
found before (Sasaki et al. 2022). In both examples, the signif-
icant associations included known candidate genes, indicating 
that including these covariates yielded biologically meaningful 
results.

However, it is important to be aware that inappropriate 
covariates can also reduce power to detect true associations, 
or even amplify spurious associations (Mefford and Witte 
2012, Pirinen et al. 2012, Stephens 2013). Whether or not to 
include covariates depends crucially on the causal relationships 
between variables, in particular whether the confounding vari-
able is causative for the phenotype of interest or not. However, 
causal inference is challenging, and it is not always clear what 
the optimal model should be. We refer the reader to Stephens 
(2013) for a detailed discussion of this issue and to McElreath 
(2018) for an introduction to causal modeling. The inclusion of 
covariates in GWAS should be planned with care.

Following up on Associations

When a GWAS identifies one or more regions of the genome 
showing significant associations with a trait, what should be 
done next? Since a genetic association is merely a correlation, 
there is no substitute for validating the association with exper-
imental evidence, such as mutants, crosses or allele swapping. 
Nevertheless, there are some statistical approaches that can 
be used to gain further insight into your initial results. In this 
section, we detail three of these approaches, focusing on (i) 
fine mapping to narrow down candidate causal variants, (ii) 
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Fig. 2 Following up on associations. (A) Fine mapping: target regions for fine mapping are determined based on significant peaks from GWAS results. Genome 
regions around the peak are analyzed according to genetic structures, represented by linkage disequilibrium (LD). After narrowing down the region, a penalized 
model identifies a handful of candidate SNPs by estimating the effects of all selected SNPs at once, and penalizing or shrinking the original effects (open points) 
toward zero (filled points), leaving only those SNPs that explain the phenotype the best. Original P-values (filled plots) at most loci go to zero (open plots). Align-
ments, including indels and gene annotations, help to infer the biological mechanism driving the association with the phenotype. The table indicates alignments 
of the target regions and triangles below the table indicate candidate SNPs. (B) Exploring additional associations. After identifying an association with an initial 
GWAS, the genotype at the most strongly associated SNP is used as a cofactor in a second GWAS. This helps identify additional associations independent of the 
initial association and eliminates many associations in LD. Iterating this process can detect additional independent SNPs contributing to phenotypic variation in 
the targeted region. (C) Decomposition of synthetic peaks. An example of a synthetic peak linking multiple haplotypes containing causal alleles. PCA of genotypes 
around the peak reveals the genetic structure. Adding PC values as covariates in the model corrects the local genetic structure, and the association indicates a more 
accurate position of the causal variants.

using initial results to identify additional associations and (iii) 
assessment of whether associations are spurious (Fig. 2).

Fine mapping causal variants and gene 
prioritization
A region associated with a phenotype may contain hundreds of 
SNPs in linkage disequilibrium with the causal variant. Having 
identified initial associations, a next step might be to refine or 

‘fine map’ the set of SNPs that are likely to be causal variants 
responsible for the phenotype. In GWAS, this is often done sta-
tistically. For example, penalized models estimate effects of all 
variants in a region at once in a way that penalizes or ‘shrinks’ 
the association at most loci to zero, leaving only one or a 
handful of SNPs with non-zero associations (Fig. 2A). A pop-
ular penalized model is lasso regression; see Spain and Barrett 
(2015), Schaid et al. (2018) and Uffelmann et al. (2021) for an 
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overview of related methods. Caution is required in interpreting 
the results as indicating that any variant has a direct causal 
effect on a trait. This assumes that a peak reflects a single causal 
SNP, that this SNP has been genotyped, and that the popu-
lation is homogeneous. In reality, a causal variant is often an 
ungenotyped structural variant (Fig. 2A), there may be several 
causal mutations nearby one another, and patterns of associ-
ation may be complicated by local or global genetic structure 
(Larsson et al. 2013, Hormozdiari et al. 2014, Spain and Bar-
rett 2015). Nevertheless, with due care fine mapping can be a 
useful tool in narrowing down candidate variants for further
investigation.

After fine-mapping, the next step is inferring the biologi-
cal cause of the phenotype, according to the selected SNPs. 
This includes predicting the potential impact of variants on 
protein function or the disruption of regulatory elements. This 
process is challenging, but necessary for selecting SNPs for 
building biological hypotheses and experimentally validating 
those hypotheses. Currently, accumulating biological resources, 
including detailed gene annotation and population-level gene 
expression data, are available to further narrow down the can-
didates (Broekema et al. 2020, Uffelmann et al. 2021). In these 
cases, it is impossible to be sure about causality using GWAS 
alone, and it is therefore wise to follow-up on associations with 
additional data.

Exploring additional associations
In the standard GWAS, we typically test the association at one 
SNP at a time (Supplementary note box 1). However, there 
may be multiple SNPs with substantial, independent effects 
on the trait, but which are correlated with one another due 
to physical linkage or population structure. In this case, the 
effects of these SNPs can obscure one another (Segura et al. 
2012, Yang et al. 2012). A solution to this problem is to repeat 
the GWAS including the genotype at the most strongly asso-
ciated SNP as a cofactor in a multilocus mixed model (Segura 
et al. 2012). This method often reveals additional peaks that 
were previously masked (Fig. 2B). For example, Dubin et al. 
(2015) identified a genetic association with DNA methylation 
close to the methyltransferase gene CHROMOMETHYLASE 2
(CMT2). A subsequent GWAS using the genotype at that SNP 
as a cofactor revealed a second association at a nearby locus. 
Variants at these two loci were in perfect linkage disequilib-
rium, indicating that there had been two independent rounds 
of selection at this gene. Including genotypes as cofactors can 
be done manually with any GWAS software that accepts cofac-
tors. Alternatively, an automated stepwise screening procedure 
is available in LIMIX (Lippert et al. 2014).

While useful, users should be aware that multilocus proce-
dures are typically tantamount to stepwise regression, which 
has received substantial criticism (e.g. Harrell 2015). Neverthe-
less, as long as GWAS is performed with these caveats in mind, 
and especially when resulting peaks are independently vali-
dated, MLMM is a very useful tool to clarify genetic associations 
(Segura et al. 2012).

Decomposition of synthetic peaks
If a trait is controlled by multiple, locally, clustered loci, a non-
causal SNP may often show a stronger association with the 
phenotype than any of the causal alleles (Fig. 2C). A common 
scenario is that causal alleles are only weakly associated with 
the phenotype because they are at low frequency, whereas cer-
tain non-causal alleles are at higher frequency but are linked 
to multiple causal alleles, and so ‘absorb’ the effects of those 
linked alleles (Devlin and Roeder 1999, Dickson et al. 2010, Platt 
et al. 2010). Such spurious associations are well known as ‘syn-
thetic peaks’ or ‘ghost peaks’, and are usually caused by genetic 
heterogeneity, when multiple haplotypes segregate in a region 
that have not been broken up by recombination (Bergelson and 
Roux 2010, Platt et al. 2010). In addition to genetic heterogene-
ity, a recent study suggested that synthetic peaks reflect a signal 
of epistasis between SNPs (Liu et al. 2024).

Synthetic associations are most often detected by careful 
examination of association patterns and haplotype structures 
around significant peaks. This may reveal that the region of asso-
ciation is especially wide, that there are multiple peaks close 
to one another, or that the region includes a known candidate 
gene, but some distance from the strongest association. GWAS 
in A. thaliana have provided many examples of these patterns, 
including life history traits (Atwell et al. 2010, Kerdaffrec et al. 
2016, Sasaki et al. 2021), and agronomic traits in tomato (Lin 
et al. 2014) and rice (Huang et al. 2010, Yano et al. 2016). Hid-
den haplotype structures can also be revealed by PCA of the 
SNP matrix in the region (e.g. Todesco et al. 2020; Sasaki et al. 
2021) or the use of machine learning (Liu et al. 2024).

Once evidence for a synthetic association has been uncov-
ered, the next step is to re-examine genetic associations within 
haplotype groups. This can be conducted either manually or 
statistically. For example, Yano et al. (2016) identified a genetic 
association with heading date in rice, which was close to but 
did not include the candidate gene HEADING DATE 1 (Hd1), a 
flowering-time regulator. However, when the samples were split 
into subpopulations based on Hd1 haplotype they did recover a 
genetic association at the HD1 locus. Similarly, this stratification 
can be conducted statistically by including haplotypes as cofac-
tors in a second GWAS analysis, as described in the previous 
section (Kerdaffrec et al. 2016, Sasaki et al. 2021).

When there are No Significant Associations

It may be the case that even a large, well-designed GWAS returns 
no significant genetic associations at all. In such cases, it can 
be tempting, if dispiriting, to conclude that the GWAS ‘failed’. 
However, more than a century of work indicates that many 
heritable traits should be influenced by a large number of loci, 
each making a small contribution (Barton, Etheridge and Véber, 
2017, Galton 1877, Fisher 1918). This is especially true for traits 
under natural or artificial selection, because selection quickly 
removes variation at these loci. With this in mind, the absence 
of strong genetic associations simply indicates that there are 
no alleles of large effect segregating in the sample, and it is 
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important to be aware that this is a perfectly valid conclusion 
to reach. Rather, this indicates that the interesting questions 
lie in the relationship between phenotypes and the related-
ness between individuals. Alternatively, multiple alleles within 
a single gene resulting from independent selection events can 
disrupt true associations (Atwell et al. 2010). The absence of 
significant associations does not necessarily mean that a GWAS 
has ‘failed’.

In this section, we outline steps that may be taken to follow-
up on a GWAS that did not find strong genetic associations. 
First, there is much that can be learnt about the genetics of 
quantitative traits by focusing on phenotypes only; see Falconer 
and Mackay (1996) and Lynch and Walsh (1998) for an introduc-
tion to the topic, and Sella and Barton (2019) for a thorough 
review of the biology of quantitative genetic variation in the 
GWAS era. Here we highlight practical steps that may be taken 
that use genetic information directly, focusing on (i) how to 
quantify the extent to which a trait has any genetic basis at all, 
(ii) how to partition genetic signals from different parts of the 
genome and whether (iii) population structure or (iv) genetic 
heterogeneity obscures a true association (Fig. 3).

Quantifying the genetic basis of a trait
Heritability describes the proportion of overall trait variation 
that is due to genetic differences between individuals. This can 
be viewed as a direct quantitative estimate of the correlation 
between phenotype and relatedness. For example, the heritabil-
ity of flowering time in A. thaliana and rice is >0.9, indicating 
that more than 90% of the variation is due to genetic differences 
(Sasaki et al. 2015). However, only a handful of significant asso-
ciations with individual loci could be detected by GWAS, and 
their joint allelic effects explain only a part of total heritabil-
ity (Yu et al. 2002, Li et al. 2010, 1001 Genomes Consortium 
2016). This discrepancy indicates genetic variation in flowering 
time is due to many alleles with small effect sizes. On the other 
hand, low heritability estimates indicate that either the trait 
has a weak genetic basis, and/or that the trait is strongly influ-
enced by the environment or is measured with substantial error 
(Houle 1992). It may be possible to improve the estimate of her-
itability by reviewing the study design to remove environmental 
effects and reduce measurement error, which may in turn allow 
genetic association to be detected. In this way, heritability is a 
useful step in determining how much GWAS can tell us, and 
highlights the need for careful study design.

There are two main approaches to estimating heritability. 
Classical quantitative genetic approaches use prior information 
about relatedness, for example by quantifying the variance in 
phenotype of individuals within and between multiple fam-
ilies or genotypes (Falconer and Mackay 1996). This can be 
done without genotype data and has a relatively straightfor-
ward interpretation, but may not always be possible to estimate. 
In contrast, so-called SNP heritability or pseudo-heritability 
estimates relatedness based on shared SNPs, and uses this to 
estimate the correlation with phenotype (Kang et al. 2010, Yang 
et al. 2010) (Fig. 3A). This is estimated by building a matrix of 

relatedness between all pairs of individuals, and using this to 
fit a random effect describing the variance in the phenotype 
explained by relatedness (Fig. 3A). This is very similar to pop-
ulation structure adjustment using a relatedness matrix in the 
standard GWAS, but without any main effects of individual SNP 
effects. This approach was motivated by the failure of conven-
tional GWAS to identify variants affecting human height (the 
so-called ‘missing heritability’ debate); by taking all loci into 
account at once with a relatedness matrix, a much greater pro-
portion of variance in height could be explained (Yang et al. 
2010). The interpretation of SNP heritability is more compli-
cated than classical heritability because it is sensitive to the 
effect sizes of causative SNPs. In particular, it may not be a good 
heritability estimate when the phenotype is controlled by a 
small number of loci (Yang et al. 2017) because SNP heritability 
assumes effects are spread fairly evenly across the genome.

Partitioning genetic variation across the genome
SNP heritability measures the relationship between differ-
ences in phenotype and relatedness across the whole genome 
(Fig. 3A). This idea can be taken further by partitioning the 
genome into units of interest, building separate matrices of 
relatedness for each unit and asking how much of the variance 
in phenotype is explained by each (Visscher et al. 2007, Yang 
et al. 2011). This efficiently describes the aggregate effect of all 
SNPs at once where the effects of any individual SNP would be 
too small to be detected. For example, Meng et al. (2016) com-
pared the variance in gene expression explained by SNPs in cis
and trans to each gene, as well as DNA methylation level at the 
gene, and found a primary role for trans effects. This approach 
can also be expanded to test polygenic GxE (Lippert et al. 2014). 
For example, Sasaki et al. (2015) found strong GxE effects in 
flowering time phenotypes for A. thaliana accessions grown at 
two temperatures, but the genetic basis for the variation was 
only revealed by taking the aggregate effects of many loci into 
account at once.

Population structure masks associations
An inherent challenge in GWAS is to account for popula-
tion structure (Fig. 3B). On one hand, doing so is essential 
because not accounting for population structure generates 
false-positive associations (Kang et al. 2008, Yu et al. 2006, 
Vilhjálmsson and Nordborg 2013). On the other hand, this 
can obscure true associations that are correlated with popu-
lation structure (Korte and Farlow 2013). A simple approach 
is to compare GWAS models with or without correction for 
population structure (Atwell et al. 2010). Another is to run 
separate GWAS on distinct subpopulations of the data set 
(Lopez-Arboleda et al. 2021). Although this likely entails a sub-
stantial loss of sample size, it may allow for the detection of 
alleles segregating within a population without overcorrect-
ing for differences between populations (Sasaki et al. 2015,
Gloss et al. 2022). This may itself reveal different evolutionary 
histories among populations (Lopez-Arboleda et al. 2021).
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Fig. 3 Mapping approaches if there seem to be no significant associations. (A) Summary of basic models. Each row indicates models. Phenotype is the 
dependent variable (circle), and the others are independent variables to be tested (filled squares) and the correction (open squares). (B) Examples of factors masking 
significant associations. (i) Quantifying the genetic basis of a trait. For polygenic traits, clusters of SNPs each with small effects on the trait can be assessed using the 
local–global model. This model compares the variance in the trait explained by a relatedness matrix based on SNPs in a small region of the genome to that explained 
by a relatedness matrix based on genome-wide SNPs. (ii) The effects of population structure. When causal variants are correlated with population structure, then 
accounting for this structure with a relatedness matrix can obscure the association at these variants. These associations may be revealed by comparing GWAS with 
and without the correction for population structure. (iii) Genetic heterogeneity. When there are multiple causal SNPs that are confounded by complex haplotype 
structures incorporating a priori SNPs as a cofactor in the models help to identify associations at a more accurate position of the causal variants. SNP effects are 
tested with and without a priori information.
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Population structure causes false-positive associations
because it generates linkage disequilibrium between loci across 
the genome. Several methods aim to model this linkage directly 
by first identifying other SNPs in linkage disequilibrium with a 
test SNP and then recalculating the relatedness matrix exclud-
ing these SNPs (Listgarten et al. 2012, Wang et al. 2014). Fixed 
and random model Circulating Probability Unification (Farm-
CPU) takes these ideas a step further by combining the use of 
linked SNPs as cofactors and accounting for these SNPs in the 
relatedness matrix (Liu et al. 2016). This is done by alternately 
identifying associated SNPs, adjusting the relatedness matrix 
based on those SNPs, then testing associations at each SNP 
again, and so on, until no further improvement is possible.

Statistical corrections can alleviate, but are unlikely to com-
pletely eliminate, confounding with population structure, espe-
cially when this structure is strong. In these cases, it may be 
worth considering an alternative design that reduces popu-
lation structure experimentally by crossing. Popular designs 
include backcrossing diverse genotypes to a single parent 
(nested association mapping; Yu et al. 2008), crossing multi-
ple parental genotypes to each other (Kover et al. 2009, Liu 
et al. 2020), or combining data from multiple bi-parental crosses 
(Xiao et al. 2016). These designs can be seen as combining the 
advantages of high genetic diversity of natural populations with 
reduced population structure from crossing. Nevertheless, they 
require substantial effort to set up, cannot easily be augmented 
with additional samples as they become available, and may 
not be feasible in many species. Plant species are particularly 
amenable to these designs because they can often be inbred 
and seeds stored and reused. Plants also often show substan-
tial population structure in nature, and so experimental crosses 
are often of great benefit in elucidating the genetic basis of traits 
(Kitony 2023).

Genetic heterogeneity may mask associations
We previously described how genetic heterogeneity can cause 
spurious genetic associations where none truly exists (Fig. 2C). 
It may also be that multiple causal variants within a single gene 
are segregating in population, but the true signal of each is 
diluted by genetic heterogeneity. This is known as allelic het-
erogeneity, and the classic example is in flowering time in A. 
thaliana (Fig. 3B). FRIGIDA (FRI), the major determinant of flow-
ering time, controls FLOWERING LOCUS C (FLC), a suppressor 
of flowering time. Multiple independent loss-of-function alle-
les in FRI have arisen that dramatically shorten flowering time 
(Shindo et al. 2005, Fulgione et al. 2022). This means that each 
allele, while occurring at low frequency, is only partly associ-
ated with flowering time but strongly associated with popu-
lation structure. This means that these associations have been 
challenging to detect with GWAS (Atwell et al. 2010).

Identifying allelic heterogeneity that masks associations is 
challenging, but if prior information about haplotypes is avail-
able, this can be included in the analysis to refine associations. 
For example, two commonly used lab strains of A. thaliana, 

Columbia and Landsberg erecta, are known to harbor inde-
pendent loss-of-function mutations at FRI, but neither of these 
associations were found using a standard GWAS of flowering 
time phenotypes (Atwell et al. 2010). Including the haplotype 
state at these alleles as a cofactor in a GWAS on flowering 
time improved the associations (Fig. 3B). In the absence of 
prior knowledge, an alternative approach is gene-set analysis 
(de Leeuw et al. 2015). Rather than looking for associations with 
individual SNPs, this instead focuses on associations with entire 
genes. In a first step, this performs PCA of SNPs from an entire 
gene. If there is substantial structuring into distinct haplotypes, 
this should reflect a lot of the variation between genotypes and 
should explain the strongest principal components. The result-
ing principal components are then used as pseudo-genotypes 
to look for associations with the phenotype (de Leeuw
et al. 2015).

Conclusions and Perspectives

With the rapid advancement of high-throughput genotyping 
and phenotyping technologies, GWAS has become increas-
ingly powerful. The flexible GWAS models introduced in this 
review represent robust tools for elucidating the molecular and 
evolutionary basis of plants shaped by natural conditions.

This success has relied on a simple correlation between SNPs 
and traits of interest. However, this relationship is often dis-
torted by confounding with other variables. Two sources of 
confounding have come up again and again in this review. First, 
SNPs in natural populations and cultivars always show some 
degree of linkage disequilibrium. Over short scales, alleles are 
arranged into haplotypes, causing correlations between nearby 
SNPs. Over longer scales, there will be correlations between 
SNPs due to population structure or selection. Thus, GWAS 
panels are fundamentally different from mutant screenings that 
use a single genetic background. Second, traits are often cor-
related with other biological traits or environmental variables. 
If ignored, these correlations can cause real associations to be 
missed, or spurious associations to be identified (Fig. 2). A com-
mon feature of many of the approaches we have outlined is 
that they aim to directly model the relationships between SNPs, 
traits of interest and confounders, and thereby increase the 
power to detect true genetic associations (Fig. 3).

Nevertheless, a major challenge is that the true causal rela-
tionship between variables is not known and often not obvious. 
Despite this, there are two steps that can be taken at different 
stages of a project. The first is to ensure that the experimen-
tal design is robust as it can be. High-quality phenotype data 
and designed GWAS panels make GWAS results more reliable 
(Myles et al. 2009, Ogura and Busch 2015). It is worth taking 
time to think through potential confounding variables and their 
possible relationships with the phenotype of interest, and plan-
ning how they can be accounted for experimentally or statisti-
cally (Stephens 2013). Collecting multiple relevant traits from 
the samples simultaneously allows for flexibility in the choice of 
analysis and reducing potential statistical issues (Stephens 2013; 
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see also Supplementary note box 1). Note that there may often 
be multiple biologically plausible hypotheses and that embrac-
ing this is both legitimate and wise (Burnham and Anderson 
2002, Betini et al. 2017).

The other is to approach analysis with a data exploration 
mind-set. Since confounding can take many forms that are dif-
ficult to predict from the outset, it can be useful to try several 
approaches and compare the results (Figs. 1B, 2, and 3). Some 
of the tools described here may be better or worse at describ-
ing different aspects of the data as they enable the modeling 
of relationships between genetic and phenotypic variables. For 
example, single and multitrait models can be seen as comple-
mentary approaches, and it can be worthwhile trying both. 
Likewise, confounding due to genetic heterogeneity is typi-
cally revealed by careful exploration of underlying haplotype 
structures. It is important to note that exploration should be 
done with care—simply trying different analyses until a desir-
able result is found is tantamount to P-value hacking, and liable 
to generate incorrect conclusions. It is better to remember that 
GWAS are best viewed as hypothesis-generating exercises, and 
that initial genetic associations are the starting point to explore 
and validate these hypotheses in more detail.

In many different fields, GWAS applications have brought us 
great new biological insights. The potential for continued dis-
covery is vast, and increased usage of more advanced GWAS 
methods will further our understanding of the genetic regula-
tion of phenotypic variation. The ongoing development of inno-
vative methodologies will allow for asking unanswered ques-
tions that are currently limited by our computational capacities.
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(2012) An efficient multi-locus mixed-model approach for genome-
wide association studies in structured populations. Nat. Genet. 44: 
825–830.

Sella, G. and Barton, N.H. (2019) Thinking about the evolution of complex 
traits in the era of genome-wide association studies. Annu. Rev. Genomics 
Hum. Genet. 20: 461–493.

Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M., 
et al. (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining 
variation in flowering time of Arabidopsis. Plant Physiol. 138: 1163–1173.

Spain, S.L. and Barrett, J.C. (2015) Strategies for fine-mapping complex 
traits. Hum. Mol. Genet. 24: R111–9.

Stearns, F.W. (2010) One hundred years of pleiotropy: a retrospective. 
Genetics 186: 767–773.

Stephens, M. (2013) A unified framework for association analysis with 
multiple related phenotypes. PLoS One 8: e65245.

Sul, J.H., Martin, L.S. and Eskin, E. (2018) Population structure in 
genetic studies: confounding factors and mixed models. PLoS Genet. 14: 
e1007309.

Thoen, M.P.M., Davila Olivas, N.H., Kloth, K.J., Coolen, S., Huang, -P.-P., 
Aarts, M.G.M., et al. (2017) Genetic architecture of plant stress resis-
tance: multi-trait genome-wide association mapping. New Phytol. 213: 
1346–1362.

Tibbs Cortes, L., Zhang, Z. and Yu, J. (2021) Status and prospects of genome-
wide association studies in plants. Plant Genome 14: e20077.

Todesco, M., Balasubramanian, S., Hu, T.T., Traw, M.B., Horton, M., Epple, P., 
et al. (2010) Natural allelic variation underlying a major fitness trade-off 
in Arabidopsis thaliana. Nature 465: 632–636.

Todesco, M., Owens, G.L., Bercovich, N., Légaré, J.S., Soudi, S., Burge, D. 
O., et al. (2020) Massive haplotypes underlie ecotypic differentiation in 
sunflowers. Nature. 584: 602–607.

Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, 
A.R., et al. (2021) Genome-wide association studies. Nat. Rev. Methods 
Primers. 1: 1–21.

Urbut, S.M., Wang, G., Carbonetto, P. and Stephens, M. (2019) Flexible sta-
tistical methods for estimating and testing effects in genomic studies 
with multiple conditions. Nat. Genet. 51: 187–195.

Valladares, F., Sanchez-Gomez, D. and Zavala, M.A. (2006) Quantitative 
estimation of phenotypic plasticity: bridging the gap between the evo-
lutionary concept and its ecological applications. J. Ecol. 94: 1103–1116.

Vilhjálmsson, B.J. and Nordborg, M. (2013) The nature of confounding in 
genome-wide association studies. Nat. Rev. Genet. 14: 1–2.

Visscher, P.M., Macgregor, S., Benyamin, B., Zhu, G., Gordon, S., Medland, 
S., et al. (2007) Genome partitioning of genetic variation for height from 
11,214 sibling pairs. Am. J. Hum. Genet. 81: 1104–1110.

Wang, Q., Tian, F., Pan, Y., Buckler, E.S. and Zhang, Z. (2014) A SUPER 
powerful method for genome wide association study. PLoS One 9:
e107684.

Weller, J.I., Wiggans, G.R., Vanraden, P.M. and Ron, M. (1996) Application 
of a canonical transformation to detection of quantitative trait loci with 
the aid of genetic markers in a multi-trait experiment. Theor. Appl. Genet. 
92: 998–1002.

12

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/advance-article/doi/10.1093/pcp/pcae079/7710836 by M

ax Perutz Library user on 05 Septem
ber 2024



Plant Cell Physiol. 00(00): 1–13 (2024) doi:https://doi.org/10.1093/pcp/pcae079

Xiao, Y., Tong, H., Yang, X., Xu, S., Pan, Q., Qiao, F., et al. (2016) Genome-
wide dissection of the maize ear genetic architecture using multiple 
populations. New Phytol. 210: 1095–1106.

Xu, S. (2003) Theoretical basis of the beavis effect. Genetics 165: 2259–2268.
Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., 

et al. (2010) Common SNPs explain a large proportion of the heritability 
for human height. Nat. Genet. 42: 565–569.

Yang, J., Ferreira, T., Morris, A.P., Medland, S.E. Genetic Investigation of 
ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Repli-
cation And Meta-analysis (DIAGRAM) Consortium et al. (2012) Con-
ditional and joint multiple-SNP analysis of GWAS summary statistics 
identifies additional variants influencing complex traits. Nat. Genet. 44: 
369–75, S1–3.

Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E., Caporaso, N., Cun-
ningham, J.M., et al. (2011) Genome partitioning of genetic variation for 
complex traits using common SNPs. Nat. Genet. 43: 519–525.

Yang, J., Zeng, J., Goddard, M.E., Wray, N.R. and Visscher, P.M. (2017) 
Concepts, estimation and interpretation of SNP-based heritability. Nat. 
Genet. 49: 1304–1310.

Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., 
et al. (2019) GWAS with principal component analysis identifies a gene

comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. U. S. 
A. 116: 21262–21267.

Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.-C., Hu, L., et al. 
(2016) Genome-wide association study using whole-genome sequenc-
ing rapidly identifies new genes influencing agronomic traits in rice. Nat. 
Genet. 48: 927–934.

Yu, J., Holland, J.B., McMullen, M.D. and Buckler, E.S. (2008) Genetic design 
and statistical power of nested association mapping in maize. Genetics
178: 539–551.

Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley, J.F., et al. 
(2006) A unified mixed-model method for association mapping that 
accounts for multiple levels of relatedness. Nat. Genet. 38: 203–208.

Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Li, X.H. and Zhang, Q. (2002) Identification 
of quantitative trait loci and epistatic interactions for plant height and 
heading date in rice. Theor. Appl. Genet. 104: 619–625.

Zhou, X. and Stephens, M. (2014) Efficient multivariate linear mixed 
model algorithms for genome-wide association studies. Nat. Methods 11: 
407–409.

Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., et al. 
(2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172: 
249–261.e12.

Plant Cell Physiol. 00(00): 1–13 (2024) doi:https://doi.org/10.1093/pcp/pcae079, Advance Access publication on 11 July 2024, available online at 
https://academic.oup.com/pcp
© The Author(s) 2024. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 
re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via 
the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

 13

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/advance-article/doi/10.1093/pcp/pcae079/7710836 by M

ax Perutz Library user on 05 Septem
ber 2024

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Beyond the Standard GWAS—A Guide for Plant Biologists
	 Introduction
	 Combining Multiple Traits in a Single Analysis
	 Joint analysis of multiple traits
	 Interactions between genotype and the environment
	 The inclusion of covariates: a double-edged sword

	 Following up on Associations
	 Fine mapping causal variants and gene prioritization
	 Exploring additional associations
	 Decomposition of synthetic peaks

	 When there are No Significant Associations
	 Quantifying the genetic basis of a trait
	 Partitioning genetic variation across the genome
	 Population structure masks associations
	 Genetic heterogeneity may mask associations

	 Conclusions and Perspectives
	 Supplementary Data
	 Data Availability
	 Funding
	 Acknowledgments
	 Author Contributions
	 Disclosures
	 References


